—— PROUCTS LIST
共聚焦成像光學(xué)切片中的針孔幾何形狀
共聚焦成像的光學(xué)切片要求在光路發(fā)射部分的場(chǎng)共軛平面上有一個(gè)小孔。在簡(jiǎn)單的情況下,這個(gè)孔徑為圓形,允許透射出照亮孔徑的艾里衍射圖案的中心部分??讖酱笮?yīng)該剛好可以通過(guò)該圖案(“艾里斑")的內(nèi)圈。因此,孔徑的正確大小取決于波長(zhǎng)和物鏡的數(shù)值孔徑,因?yàn)檫@些參數(shù)也定義了中間像平面中的(放大)衍射圖案。
為了適應(yīng)不同的顏色和分辨率,檢測(cè)針孔應(yīng)該可變。要獲得精確的圓形孔徑,這意味著在機(jī)械設(shè)備上提供一組孔徑,以便在需要時(shí)可以改變大小。大多數(shù)共聚焦顯微鏡使用一種可調(diào)諧針孔代替,通常為雙葉片“虹膜"。因此,孔徑不是圓形,而是矩形(正方形)。
有人認(rèn)為,六角形針孔(使用三枚葉片)在傳遞焦點(diǎn)信息方面會(huì)更有效,因?yàn)樗梢愿采w較大部分的圓形[1,2]。
不同幾何形狀的面積
可以通過(guò)孔徑的光量顯然取決于孔徑本身的大小。舉例來(lái)說(shuō),對(duì)于圓形孔徑,如果半徑增加,就會(huì)透射更多光線。然后,該透光量取決于由半徑r定義的面積Ac:
如果孔徑為方形,則面積As的計(jì)算取決于邊長(zhǎng)a:
最后,通過(guò)邊長(zhǎng)s給出六邊形的面積Ah:
所有這些計(jì)算只需具備中學(xué)知識(shí)即可。然而,如何比較不同尺寸并無(wú)明確規(guī)定:例如,你可以比較內(nèi)接于圓形的六邊形。這種情況下,這些面積的比率為Ac:Ah:As = 100:83:64。正方形的面積比六邊形小大約30%。這一結(jié)果被用來(lái)證明使用六邊形孔徑時(shí),與正方形光圈相比,“亮度提高了30%"。這一聲明來(lái)自*,甚至出現(xiàn)在公開(kāi)網(wǎng)站上。
同樣的,人們可以使用帶內(nèi)接圓形的多邊形比較。這種情況,這些面積的比率為Ac:Ah:As = 100:110:127,由此我們可以得出結(jié)論,使用方形孔徑時(shí),亮度可以提高大約15%。
很明顯,這兩種論述在科學(xué)上都站不住腳,會(huì)讓讀者陷入迷惑,當(dāng)然這可能就是這種陳述的目的。
由于通過(guò)孔徑的光量取決于面積,因此比較不同尺寸的正確參數(shù)是各種幾何形狀的面積。通過(guò)非常簡(jiǎn)單的數(shù)據(jù)運(yùn)算,你可以知道:
必須要獲得面積與半徑為r的圓形孔徑相同的多邊形。這一共識(shí)在1980年代末就被共聚焦社區(qū)所認(rèn)同(因?yàn)檫@是明智的做法)。
因此,如果正確比較,不同幾何形狀的孔徑將傳輸相同的光量,并且光線分布均勻。
圖1:用于比較不同幾何形狀孔徑的選項(xiàng)左:內(nèi)接于圓的多邊形。多邊形的角越多,面積就越大。右:內(nèi)接于多邊形的圓多邊形的角越多,面積就越小。正確的方法顯示在中間:計(jì)算多邊形的邊長(zhǎng),使多邊形面積與圓面積相同。
針孔卷積與PSF
事實(shí)上,投射到針孔的光強(qiáng)分布并不均勻,而是由艾里衍射圖案確定。為了找出實(shí)際的透光效率,必須將不同幾何形狀和大小孔徑同艾里圖案疊加在一起。例如,圓形和方形針孔需要進(jìn)行此等操作,其中的獨(dú)立參數(shù)是長(zhǎng)度vd,該長(zhǎng)度vd默認(rèn)根據(jù)圓形半徑調(diào)整,以便產(chǎn)生相同的面積[3]
我們計(jì)算了艾里圖案通過(guò)各種幾何形狀和大小的孔徑時(shí)的光量,以研究其與面積本身的函數(shù)關(guān)系,這樣更易理解并能進(jìn)行適當(dāng)?shù)谋容^。簡(jiǎn)單的情況是與圓形孔徑的依賴關(guān)系,它能夠整合進(jìn)來(lái)的(固定的)艾里圖案的強(qiáng)度分布:
以計(jì)算多邊形孔徑的強(qiáng)度分布,并用數(shù)值方法進(jìn)行疊加。
圖2清晰表明,至少對(duì)于圓形和等邊多邊形,焦距強(qiáng)度與幾何形狀*無(wú)關(guān)。差異在大約2%的范圍內(nèi)變化,六邊形分布在圓形和正方形之間,與預(yù)期相同。
因此,關(guān)于檢測(cè)針孔形狀的焦平面信號(hào)傳輸效率(在(1)中稱為“亮度")的任何結(jié)論均沒(méi)有任何意義。如果存在差異,則說(shuō)明比較參數(shù)選擇錯(cuò)誤。
圖2:通過(guò)不同形狀和大小的孔徑傳輸信號(hào)的比較。目前使用的幾何形狀包括圓形、方形和六邊形。當(dāng)用艾里圖案計(jì)算照明時(shí),所有幾何形狀都顯示出幾乎相同的對(duì)大小的依賴關(guān)系,而該大小由孔徑面積決定。
光譜共聚焦中的針孔幾何形狀
如上所示,正多邊形的邊數(shù)對(duì)聚焦信號(hào)的傳輸沒(méi)有影響。沒(méi)有理由假設(shè)對(duì)散焦信號(hào)也是如此。因此,看起來(lái)圓形、方形和六邊形針孔在性能上相同。對(duì)于基于濾光片的經(jīng)典共聚焦顯微鏡來(lái)說(shuō),這可能是一個(gè)合理的結(jié)論。用于使用色散元件作為不同發(fā)射帶的分離器件的共聚焦顯微鏡時(shí),存在差異。
對(duì)于含有色散元件的裝置,其光譜分辨率不僅取決于元件本身的性能,還取決于入射光束的尺寸和幾何形狀。顯然,較大的光束直徑會(huì)降低光譜分辨率。我們把記錄光譜的中間像平面(光度計(jì)滑塊的位置等)稱為光譜平面。較大的物體會(huì)在光譜平面上造成較大的圖像。在光譜平面中的任何給定位置,若物體尺寸較大,更多的顏色將有助于局部強(qiáng)度。因此,光譜探測(cè)的一個(gè)固有結(jié)果是光譜分辨率依賴于針孔大小,因?yàn)獒樋自诠庾V平面上成像!
因此,光譜平面中圖像的幾何形狀是針孔(放大后)的衍射圖樣。這些衍射圖案的差別很大,取決于幾何形狀。圓形孔徑會(huì)引起的艾里圖案,它旋轉(zhuǎn)對(duì)稱。針孔在光譜平面中旋轉(zhuǎn)不會(huì)引起差異。正方形的衍射圖樣并非旋轉(zhuǎn)對(duì)稱,其特征是在邊緣有強(qiáng)烈的波瓣,而強(qiáng)度會(huì)由內(nèi)向外大幅下降。這種效應(yīng)用來(lái)提高共聚焦掃描顯微鏡的光譜分辨率[4]:當(dāng)針孔在光譜平面內(nèi)旋轉(zhuǎn)45°時(shí),中心盤(pán)外的大部分光強(qiáng)會(huì)被引離探測(cè)范圍。光譜平面上的顏色重疊就會(huì)大幅減少——在本例中減少了1.5倍。
在使用六邊形針孔的系統(tǒng)中,這種影響要小得多,增益可以忽略不計(jì)。
因此,最佳的光譜共聚焦裝置采用一個(gè)正確定向的方形針孔。
圖3:利用相對(duì)于色散方向旋轉(zhuǎn)45°的正方形針孔繪制光路設(shè)計(jì)圖。這種組合優(yōu)化了固有的光譜分辨率——任何其他幾何形狀都會(huì)損害光譜性能。